893 research outputs found

    Homogeneous variational problems: a minicourse

    Get PDF
    A Finsler geometry may be understood as a homogeneous variational problem, where the Finsler function is the Lagrangian. The extremals in Finsler geometry are curves, but in more general variational problems we might consider extremal submanifolds of dimension mm. In this minicourse we discuss these problems from a geometric point of view.Comment: This paper is a written-up version of the major part of a minicourse given at the sixth Bilateral Workshop on Differential Geometry and its Applications, held in Ostrava in May 201

    Hilbert forms for a Finsler metrizable projective class of sprays

    Get PDF
    The projective Finsler metrizability problem deals with the question whether a projective-equivalence class of sprays is the geodesic class of a (locally or globally defined) Finsler function. In this paper we use Hilbert-type forms to state a number of different ways of specifying necessary and sufficient conditions for this to be the case, and we show that they are equivalent. We also address several related issues of interest including path spaces, Jacobi fields, totally-geodesic submanifolds of a spray space, and the equivalence of path geometries and projective-equivalence classes of sprays.Comment: 23 page

    The Cartan form for constrained Lagrangian systems and the nonholonomic Noether theorem

    Get PDF
    This paper deals with conservation laws for mechanical systems with nonholonomic constraints. It uses a Lagrangian formulation of nonholonomic systems and a Cartan form approach. We present what we believe to be the most general relations between symmetries and first integrals. We discuss the so-called nonholonomic Noether theorem in terms of our formalism, and we give applications to Riemannian submanifolds, to Lagrangians of mechanical type, and to the determination of quadratic first integrals.Comment: 25 page

    Invariant Lagrangians, mechanical connections and the Lagrange-Poincare equations

    Get PDF
    We deal with Lagrangian systems that are invariant under the action of a symmetry group. The mechanical connection is a principal connection that is associated to Lagrangians which have a kinetic energy function that is defined by a Riemannian metric. In this paper we extend this notion to arbitrary Lagrangians. We then derive the reduced Lagrange-Poincare equations in a new fashion and we show how solutions of the Euler-Lagrange equations can be reconstructed with the help of the mechanical connection. Illustrative examples confirm the theory.Comment: 22 pages, to appear in J. Phys. A: Math. Theor., D2HFest special issu

    Linearization of nonlinear connections on vector and affine bundles, and some applications

    Full text link
    A linear connection is associated to a nonlinear connection on a vector bundle by a linearization procedure. Our definition is intrinsic in terms of vector fields on the bundle. For a connection on an affine bundle our procedure can be applied after homogenization and restriction. Several applications in Classical Mechanics are provided

    Lifetimes of Stark-shifted image states

    Full text link
    The inelastic lifetimes of electrons in image-potential states at Cu(100) that are Stark-shifted by the electrostatic tip-sample interaction in the scanning tunneling microscope are calculated using the many-body GW approximation. The results demonstrate that in typical tunneling conditions the image state lifetimes are significantly reduced from their field-free values. The Stark-shift to higher energies increases the number of inelastic scattering channels that are available for decay, with field-induced changes in the image state wave function increasing the efficiency of the inelastic scattering through greater overlap with final state wave functions.Comment: 10 pages, 4 figure

    Homogeneity and projective equivalence of differential equation fields

    Get PDF
    We propose definitions of homogeneity and projective equivalence for systems of ordinary differential equations of order greater than two, which allow us to generalize the concept of a spray (for systems of order two). We show that the Euler-Lagrange fields of parametric Lagrangians of order greater than one which are regular (in a natural sense that we define) form a projective equivalence class of homogeneous systems. We show further that the geodesics, or base integral curves, of projectively equivalent homogeneous differential equation fields are the same apart from orientation-preserving reparametrization; that is, homogeneous differential equation fields determine systems of paths

    The inverse problem for Lagrangian systems with certain non-conservative forces

    Get PDF
    We discuss two generalizations of the inverse problem of the calculus of variations, one in which a given mechanical system can be brought into the form of Lagrangian equations with non-conservative forces of a generalized Rayleigh dissipation type, the other leading to Lagrangian equations with so-called gyroscopic forces. Our approach focusses primarily on obtaining coordinate-free conditions for the existence of a suitable non-singular multiplier matrix, which will lead to an equivalent representation of a given system of second-order equations as one of these Lagrangian systems with non-conservative forces.Comment: 28 page

    The Berwald-type linearisation of generalised connections

    Get PDF
    We study the existence of a natural `linearisation' process for generalised connections on an affine bundle. It is shown that this leads to an affine generalised connection over a prolonged bundle, which is the analogue of what is called a connection of Berwald type in the standard theory of connections. Various new insights are being obtained in the fine structure of affine bundles over an anchored vector bundle and affineness of generalised connections on such bundles.Comment: 25 page
    corecore